## Exercise 19

Use the method of undetermined coefficients to find the particular solution for the following initial value problems:

$$
u^{\prime \prime}-u=-2 \sin x, \quad u(0)=1, u^{\prime}(0)=2
$$

## Solution

This is an inhomogeneous ODE, so the general solution is the sum of the complementary and particular solutions.

$$
u=u_{c}+u_{p}
$$

The complementary solution is the solution to the associated homogeneous equation,

$$
u_{c}^{\prime \prime}-u_{c}=0 .
$$

This is a linear ODE with constant coefficients, so the solution will be of the form $u_{c}=e^{r x}$.

$$
u_{c}=e^{r x} \quad \rightarrow \quad u_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad u_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-1=0
$$

Factor the left side.

$$
(r+1)(r-1)=0
$$

$r=-1$ or $r=1$, so the complementary solution is

$$
u_{c}(x)=C_{1} e^{-x}+C_{2} e^{x} .
$$

We can write this in terms of hyperbolic sine and hyperbolic cosine.

$$
u_{c}(x)=A \cosh x+B \sinh x
$$

Now we turn our attention to the particular solution. Because the inhomogeneous term is $-2 \sin x$ and $u^{\prime}$ is not present on the left side, try a particular solution of the form, $u_{p}=C \sin x$. Plugging this form into the ODE yields $-C \sin x-C \sin x=-2 \sin x$, which means $C=1$. Thus, $u_{p}=\sin x$. Therefore, the general solution to the ODE is

$$
u(x)=A \cosh x+B \sinh x+\sin x .
$$

These constants can be determined since initial conditions are given.

$$
\begin{gathered}
u^{\prime}(x)=A \sinh x+B \cosh x+\cos x \\
u(0)=A=1 \\
u^{\prime}(0)=B+1=2
\end{gathered}
$$

The solution to this system of equations is $A=1$ and $B=1$. Therefore,

$$
u(x)=\cosh x+\sinh x+\sin x .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =\sinh x+\cosh x+\cos x \\
u^{\prime \prime} & =\cosh x+\sinh x-\sin x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-u=\cosh \bar{x}+\overline{\sinh } x-\sin x-(\cosh \bar{x}+\sinh x+\sin x)=-2 \sin x
$$

which means this is the correct solution.

